Mechanical ventilation modulates TLR4 and IRAK-3 in a non-infectious, ventilator-induced lung injury model
نویسندگان
چکیده
BACKGROUND Previous experimental studies have shown that injurious mechanical ventilation has a direct effect on pulmonary and systemic immune responses. How these responses are propagated or attenuated is a matter of speculation. The goal of this study was to determine the contribution of mechanical ventilation in the regulation of Toll-like receptor (TLR) signaling and interleukin-1 receptor associated kinase-3 (IRAK-3) during experimental ventilator-induced lung injury. METHODS Prospective, randomized, controlled animal study using male, healthy adults Sprague-Dawley rats weighing 300-350 g. Animals were anesthetized and randomized to spontaneous breathing and to two different mechanical ventilation strategies for 4 hours: high tidal volume (VT) (20 ml/kg) and low VT (6 ml/kg). Histological evaluation, TLR2, TLR4, IRAK3 gene expression, IRAK-3 protein levels, inhibitory kappa B alpha (IkappaBalpha), tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL6) gene expression in the lungs and TNF-alpha and IL-6 protein serum concentrations were analyzed. RESULTS High VT mechanical ventilation for 4 hours was associated with a significant increase of TLR4 but not TLR2, a significant decrease of IRAK3 lung gene expression and protein levels, a significant decrease of IkappaBalpha, and a higher lung expression and serum concentrations of pro-inflammatory cytokines. CONCLUSIONS The current study supports an interaction between TLR4 and IRAK-3 signaling pathway for the over-expression and release of pro-inflammatory cytokines during ventilator-induced lung injury. Our study also suggests that injurious mechanical ventilation may elicit an immune response that is similar to that observed during infections.
منابع مشابه
Mechanical ventilation modulates Toll-like receptor-3-induced lung inflammation via a MyD88-dependent, TLR4-independent pathway: a controlled animal study
BACKGROUND Mechanical ventilation augments lung inflammation resulting from exposure to microbial products. The objective of this study was to test the hypothesis that ventilator-associated immune modulation requires MyD88-dependent signaling. Because MyD88 is a critical adapter protein utilized for pro-inflammatory signaling by all Toll-like receptors (TLRs), with the exception of TLR3, as wel...
متن کامل0852. Selective decontamination of the digestive tract modulates the metabolic profile in a ventilator-induced lung injury model
Introduction Acute lung injury induced by mechanical ventilation [ventilator-induced lung injury (VILI)]is characterized by a particular metabolic profile in the lung and in the systemic compartment [1]. Also, VILI has been associated with an increase in intestinal permeability [2]. We hypothesized that selective decontamination of the digestive tract (SDD) can modulate the metabolic profile as...
متن کاملNeutrophil Extracellular Traps Are Pathogenic in Ventilator-Induced Lung Injury and Partially Dependent on TLR4
The pathogenesis of ventilator-induced lung injury (VILI) is associated with neutrophils. Neutrophils release neutrophil extracellular traps (NETs), which are composed of DNA and granular proteins. However, the role of NETs in VILI remains incompletely understood. Normal saline and deoxyribonuclease (DNase) were used to study the role of NETs in VILI. To further determine the role of Toll-like ...
متن کاملHost response to mechanical ventilation for viral respiratory tract infection.
Respiratory syncytial virus (RSV) bronchiolitis causes severe respiratory tract infection in infants, frequently necessitating mechanical ventilatory support. However, life-saving, mechanical ventilation aggravates lung inflammation. We set up a model to dissect the host molecular response to mechanical ventilation in RSV infection. Furthermore, the response to induced hypercapnic acidosis, rep...
متن کاملEffects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model
BACKGROUND Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventil...
متن کامل